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Abstract.A generalframeworkfor analyzingthecosmologicalredshiftin conform-
al spacetimesis developedhere. Application to the cosmologicalmodelof I.E.
Sega! is made. Contrarily to Segal’sclaim, there seemsto be no redshift in this
model.

1. INTRODUCTION

In the second decadeof this century W.M. Slipher and other astronomers
discovered a redshift in thespectrallines of most of the distant galaxies.This

fact (later called <<cosmologicalredshift>>) can be interpretedas aspecialrelati-

vistic Doppler effect which allows to assign to eachgalaxy a recessionvelocity
with respectto the Earth. In 1929 E. Hubblefound a more or less linear relation

between this velocity andthe galaxy-distance;<<expansive>>cosmologicalmodels

were originally basedon this experimentalfact. Besidesof theevidencein favour

of expansivemodels, coming from the discoveryof the cosmic microwaveback-

groundradiation in 1968 andfrom themodemelementaryparticlephysics,these
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models still provide the most satisfactory explanation of thecosmological

redshift, so that the pair cosmologicalredshift -*—* expandinguniversehasdeeply

rootedasanintuitive ideain thepresentdaycosmology.

In 1976, after several previouspapers,I.E. Segal published a book where

he proposed an alternative cosmological model, characterizedessentially for

being a conformal and (in a certain sense)non expansivemodel, from which
neverthelessSegalclaimsto predictacosmologicalredshift dependingquadratical-

ly on thedistanceto theobserver.

In theSegal’smodel:

(i) Space-time is a four-dimensional smooth manifold (C~, Hausdorff,

paracompact),connectedand endowedwith a notion of causalityinduced by a

conformal structureof signature(— + + + ). No Lorentzian metric compatible

with the conformalstructureis preferred<<a priori>> by physicalreasons(I).

(ii) Every referenceframe(C~future directedvector field) inducesa metric

in the conformal space. It’s postulatedthat, on a large scale,the averagetrajec-

tories describedby matter correspondto the integral curvesof a certain frame

whoseassociatedmetric (see later) hasgood symmetry properties,in particular,

spatial isotropy, spatialhomogeneityandtemporalhomogeneity(at least7-para-

metergroupof isometries).Thesepostulateslead to a unique(essentially)cosmos

at large scale, which is conformally diffeomorphic to (lR x S3. [— dt~oh]).

where [— dt2 oh] indicatesthe conformalstructureassociatedto theLorentzian

metric — dt2 oh (with dt2 and h the standardRiemannianstructureson IR and

S3 respectively).

(1) A remarkon conformalspacetimesshouldbemadeat this point.From theexperimental
local validity of the specialrelativity and of the inertia law, argumentscan be given [1] to
assumethe following two ingredientsfor any reasonablemacroscopicmodel of the spacetime
(taken as a four dimensional,smooth,connectedmanifold) with freely falling massiveand
massless(light) test-particleson it:

a) A conformalstructure (roughly speaking,a globally definedfield of null cones)induced

by equivalenceclasses(up to multiplication by smoothpositive functions) of locally defined
(pseudo)metricsof index I (Lorentzian type), lightpathsbeing(whensuitably parametrized)
null-geodesicsof any of theseLorentzianmetrics.

b) A (global) symmetric linear connection,whose parallel transport preservesnullity of
vectors (and of course orthogonality) and for which all trajectoriesof (freely falling) test-
-particlesaregeodesics.

Now it is not clear at this point why the above connection should be metric, i.e. why a
(mathematicallyalways existing) global Lorentzian metric should be physicallyrelevant; this
assumption(whoseexperimentalvalidationwould involve paralleltransportalong pathsbeyond
our domain of accessibility)appearsasan sextraneouselement of the theorys [1] (of courseii

can be very useful to make it, ase.g. in the Einstein’stheory).Moreover,if we do not want to
do any dynamicsat all, but only to explain some skinematicalseffect (asthe cosmological
redshift appearsto be) we do not need to speakaboutthat connection,and so the assumption

(b) can be droppedout.
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(iii) If the charts wherethe analysisof theobservationaldatais done(analysis

which necessarilytakes place in the Minkowski spaceof specialrelativity) were
normal charts of the metric — dt

2 eh, the observationalappearanceof the

averagetrajectoriesof the matter would be <<static>> and there would not exist

the possibility of explaining the cosmologicalredshift in this model.But Segal

proposesan alternativeway to assigncoordinates,basedon a certainconformal

mapping between(IR x S3, [— dt2 oh]) andthe Minkowski space,as the unique

<<anthropomorphicallypossible>>.It turns out that in thesecoordinatestheabove

observationalappearanceis not already static. Sega! claims that, due to this

<<apparent expansion>>,his model predicts a cosmological redshift and, when

calculating it, he finds for small cosmologicaldistancesa square-lawredshift-

-distancedependence(and not a linear dependenceas observedby E. Hubble).

Half of the Segal’s book is devotedto show that a careful statistical analysis

of theobservationaldatafavouresthesquare-lawagainstthe linearone.

The above mentionedextenseexperimentalevidencein favour of (metrical)

expansivecosmologicalmodels, andthe mathematicalcomplexity of the Segal’s

mode!havebeenprobablythe reasonswhy up to now that modelhasnot received

much attention from peoplestudying cosmology(besidessomearticlesof Segal
and collaboratorspublished after the mentionedbook;see[12]). RecentlyR.M.

Soneira([11]) hascasteddoubts on the validity of the statisticalanalysisdone

by Segalto supporthis resultaboutthe redshift-distancesquare-law.

But, appart from the hypothetical physical relevanceof Sega!’scosmological

model, its interest would lie in theprediction of a cosmologicalredshift dueto

an expansionthat is only observational.The presentwork is dedicatedto prove

that there is actually no cosmologicalredshiftin theSegal’smodel.

The sketchof this work is the following. In section2 we presentsomebasic

definitions and standardresultson conformalspacetimes(CST). In section 3 we

introducethe notionsof observerin a time-oriented CST,referenceframe(RF),

sychronizability and proper time synchronizability(someof the definitionshave

been merelyadapted,to theconformal case,from thestandardonesin themetric

case).We give the results that a RF metrizesin an unique way its definition

domain and that a proper time synchronizableRF is geodesicfor the induced

metric connection.We introducethenotionsof factorizerreferenceframe(FRF),
spatial homogeneityand isotropy and temporal homogeneityand we give the

result that a temporally homogeneousFRF is parallel for the induced metric

connection.

In section4 questionsrelatedto the redshift in a CST areformalized,assuming

that light-paths are(when suitably parametrized)nullgeodesicsof any Lorentzian

metric compatiblewith the conformalstructure(whatagreeswith theschemeof a

CST-basedmodel (1)); theorem I establishesthat the temporalhomogeneityof a

FRF implies that there is not redshift for the radiation emitted and received
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betweenany two of its observers.

Anticipating section6 we want to makeherethefollowing remarks:

a) Segal’s calculation to obtain a cosmological redshift in his model reduces

to the calculation of the proper time ratio for a certain pair of observers.Segal

obtains a value not equalto one; the calculation we proposeas the correctone

gives a value r = I, and in that result we arebasedto affirm that such redshift

doesnot exist.

b) Sega! doeshis calculation in the framework of quantum mechanics.And

as it doesnot seem(from aphysicalpoint of view) that an analysisof the cosmo-

logical redshift would need a quantum approach, our aim has been giving a

geometrical(classical)version of Segal’scalculation.

c) It could be thought that the definitions andresultswe haveestablishedas

<<classical analogues>> of Segal’s formalism havebeen given ad hoc in order to

obtain a value r = 1 therewhere Segalobtainsa value non equalto one.That is

not the case;in fact we aregoingto seein section6 that the formalism developed

in section 4 (basedessentiallyon the resultsof section 3) allows to reproduce

exactly the calculation of Sega!.Theresult by Segal— which, oncesuitably modi-

fied gives the value r = 1 — is independentof having followed either aquantum

or a classical(geometrical)approach.
In section 5 we study the Segal’scosmologicalmodel, finding that theconfor-

mal mapping between(lR x S3,[— dt2 oh]) and the (metric) Minkowski space,

whichgivesSegal’scoordinatizationof the cosmosby local observers:

1) agreeswith theonegiven in [6], p. 118- 121

2) definescharts which are normalcharts,non of theglobal Lorentzianmetric

— dt2 o h, but of local Lorentzianmetrics, induced (in the senseof section3) by

certain locally definedtemporallyhomogeneousFRF, whoseexplicit expressionis

alsoobtained.

In section6 the possibleexistenceof redshift in Segal’scosmologicalmodel is

analyzed. The answer is negative, and this is an inmediate consequenceof the
resultsof section4 and of the temporalhomogeneitypostulatedby Segalfor the

referencesystem whoseintegral curvescorrespondto the averagetrajectoriesof

matter. The rest of this sectionis devotedto analyzeSegal’scalculationin detail:

our main disagreementcan be summarizedby saying that the redshift is not

related to a <<time evolution>> but ratherto alight propagation(<<spacetimeevolu-

tion>>).

We give in the Appendix the explict expressionof the 1 5 fundamentalfields

associatedto theaction of the causalgroupof Segal’sCST.

About notation: when the same index appearstwice in a term, once as a

subscriptand onceas a superscript,it will be understooda summationextended

over the set of all possible values of that index, i.e.: {— 1, 0, 1, 2, 3, 4}. for the
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indicesa, b, . . - , {0, 1,2, 3} for indices~.z,v, . . . and{!, 2, 3} for indicesi,j

2. CONFORMAL SPACETIMES

DEFINITION 1.

(i) Let L be a real finite-dimensionalvectorspace.A conformallinearstruc-

ture on L is an equivalenceclassC of nondegeneratesymmetricbilinearforms on

L, equivalencebeing definedasb — b’if andonly if b’ = ab for somea (real)> 0.
We shall write: [b] = [b’]. The pair (L, C) is called a conformallinear space.If
b E C, it is said that b induces the conformal structureC and that b and C are

compatible.

(ii) Let M be a manifold. A conformal structure ~‘ on M is an assignement

to eachpointp EM of a conformal linearstructure on T,,M with the following
differentiability condition: Vp EM, ~ neighborhoodU of p and(semi Rieman-

nianstructureg, definedin U, suchthat [gq] = (~q~VqE U.

(M,~) is called a conformalmanifold and it is said thatg and ‘~‘ are compati-

ble, what is representedbyg E ~‘ ~

(iii) If M is a connectedand four-dimensionalmanifold and if the above

mentionedlocal metricsg are Lorentzian(i.e., theyhaveindex 1 or, equivalently,
signature(— + + + )), (M, Se’) will he calleda conformalspacetime(CST).

(iv) Let (M, ~‘) be CST,p EM, v E T~Mandg a Lorentzianmetric compati-

ble with ~ andwhosedomaincontainsp. v is called:

• timelike if g(u, v) < 0
• lightlike ifv’/=Oandg(v,v)=O

• spacelike ifu=Oorg(u,v)>0.

Thesedefinitions (obviously independentof the selectedg compatible with

ç~)allow to classify the vectorsin TM in threedisjoint subsets:timelike vectors
(c), lightlike vectors(if’) and spacelikevectors(i). Then TM= ~ U-~’Ug.

The correspondingdefinitions are used for curves in M, vector fields on M,

submanifoldsof M, andso on.

The set ..~t,: = ~ fl T~,Mis called the light conein p. Both ~ and : =

= ~ n T,,Mhavetwo connectedcomponents.([3], Exercise1 .1 ..9).

The existenceof a conformalstructure~ on a manifoldM restrictsthe mani-

fold topology. In particular,thereexiststhe following:

LEMMA 1. Let M be a manifold of dimension~ 2. Then, all thefollowing state-

mentsareequivalent:

(i) M admits a conformal structure ~‘ induced by local semi-Riemannian
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structureswith index1.

(ii) M admits a (global) semi-Riemannianstructurewith index 1.

(iii) M admitsa linefield.

(iv) M admitsa nowherevanishingvectorfield.

Proof

(i) ~ (ii) That is a consequenceof a standardargumentwhich usespartitions
of unity and thelocal semi-Riemannianstructuresinducing ‘~‘.

(ii) ~ (i) It is trivial.

(ii) ~ (iii) See ([6]), p. 39 -40); in that (constructive) proof the obtained
[resp. assumed]line-field becomestimelike for the assumed[resp. obtained]

semi- Riemannianstructure.
(ii) ~ (iv) See([7], p. 149); theproofof =~‘ is not constructiveand theadmissi-

ble vector field doesnot needto be timelike for the assumedsemi-Riemannian

structure.

It is well known that in a CST (M, ~‘) the set ~ C TM is anopensubmanifold
with oneor two connectedcomponents([3], Propos.1.2.1).

DEFINITION 2.

(i) A CST (M, %~)is said to be timeorientable if ~ hastwo connectedcom-

ponents.The choice of one of thesecomponentsas ~ + (future) and the other
one as ~ — (past) constitutesa temporalorientation and the CST is then said to

betime-oriented.

(ii) Let (M, ~) be a time-orientedCST.A timelike vectorv E it7.,, (with p E

EM) is calledfuture-directed (resp. past-directed) if U E : = ~ n T,,M

(resp.,vE~:= ~flT~M).

Given v E ?t7.,~,any future-directedtimelike vectorw (resp.pastdirected)at p

satisfiesg (v, w) <0 (resp.,g(u,w)> 0), g beingcompatiblewith ~‘. In addition,
every lightlike vectorn at p satisfiesg(v,n) <0 or g(u, n) > 0, Vv E ~, being
thencalledfuture-directedor past-directedrespectively([3], 1.1.9).

The set £~‘J~of future-directedlightlike vectors at p satisfies~‘ = .~.. U

U {0} U ~ (and similarly for the set of past-directedlightlike vectors).
All theseconceptscan be appliedin an obvious way to vectorfields and curves.

Time-orientability is not only mathematicallyconvenient,but also corresponds
to our physical intuition which is based,for example,in the knowledgeabout
thermodynamicalprocesses(increment of entropy) here and now on the Earth.
Thus,it is reasonableto assumethe existenceof a smoothfield of timelike vectors

definedeverywhereon the spacetime.
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LEMMA 2.

(i) A (ST is ti~ne-orientableif and only if it admits a global ti,nelike C~

vector field. Once a time-orientation has beenchosenthe field is eitherfuture-

- directedat everypoint or past-directedat everypoint.

(ii) A simply connected(‘ST is time-orientable.

Proof See[4],p. 17, 19.

REMARK. Let M be a manifold with dimension~“ 2. Then eachoneof the state-

ments(i) to (iv) from Lemma I is equivalentto:

(v) M admits a time/ike vector field for someof theadmisibleglobally defined

semi-Riemannianstructureswith index 1.

This can be expressedin other way by sayingthat any manifold which admits

a CST structure,admitsalso a time-orientedCST structure.([7], p. 149).

Time-orientability is not the only condition which canbe reasonablyimposed

on a CST. It is usually assumedalso the so-calledcausality condition, which
implies the non existence of closed non-spacelikefuture-directedcurves (this
correspondsto the idea that no eventcan be <<causedby itself>’). Other more

restrictiveconditions(like strongcausality, stablecausalityandglobalhyperboli-
city), which aresatisfiedby classicalcosmologicalmodelsand by theSegalmodel.
will not be discussedhere.

DEFINITION 3. Let (M, ‘6) be a time-orientedCST. The causalgroup of (M. ‘6)

is defined as the group of all conformal diffeomorphismsof (M,’6) onto itself
whichpreservethe time-orientation.

LEMMA 3. Let (M, ‘6) be a time-oriented cST Then, its causal group is a Lie
groupof dimensionequalor lessthat 15.

Proof SeeL5], example1.2.6 andtheorem1.5.1.

it is clear that if two time-orientedCST are causally diffeomorphic. then
their causalgroupsareisomorphicas Lie groups. •

As with Killing fields in themetric case,we havethe following:

DEFINITION 4. Let (M,’6) he a time-oriented CST. A vector field X on M is

causal if the local one-parametergroupof local diffeomorphismsgeneratedby X



62 E. AGUIRRE-DABAN, C. FERNÁNDEZ, 1. SANCHEZ-RODRIGUEZ

is causal. i.e., if and only if the following holds: VgE ‘6with non-empty
Dom X n Domg, L~g= og (a beinga certain C~function definedon the intersec-

tion of the domainsof X andg).
The maximal number of R-linearly independentcausal fields on any open

subsetofM will be equalor lessthan 15 (seeLemma3).

We shall mention, at last, a result ([2], p. 26 and 39) about the posibility of

having time-oriented conformal spacetimeswith identical local structure, but

with different global topology.

LEMMA 4. Let (M,’6) be a CST.If~ :M-+M isa coveringof M, then (M ~*‘6)

is a CST, defining ~~‘6: = [~*g] (g being any global metric on M compatible

with ‘6, seeLemma1). If(M, ‘6) is time-oriented,(ji~, 4~”6)is also time-oriented.

Example]. Given any four-dimensional connected manifold endowed with a

Lorentzianmetric, a CST can be obtainedby consideringtheconformalstructure

associatedto thatmetric.
Minkowski spaceis the spacetimeof specialrelativity. It is basedon the mani-

fold 1R4with metrici~= — dx0 o dx0 + ~ dx’ o dx’ (x0, x1, x2,x3theing the

usualcoordinatefunctionsin 1R4).
We denoteby (lR4, [si]) the associatedCST.The globallydefinedfield a/ax0is

a timelike vectorfield, so (JR4, [ri]) is time-orientable.Defining a/ax°as <<future>>,

(1R4, [s~])becomestime-orientedandalso satisfiesthe causality-condition.
The number of IR-linearly independentcausalfields is 15, i.e., maximal,hut

four of thesefields arenot complete;in fact, it can be easily seenthat the four

following fields:

s~(x,x)
X:= 8 +x05

0 2 ~°

and

i~(x,x)
X. : = 8 — x’ S (i = 1, 2, 3), with2

S ~ (v = 0, 1, 2, 3)

are causalfields (satisfying L
1fl = 2x~, z = 0, 1, 2,3), and neverthelesstheir

integral curves are not defined on the whole IR, i.e., they do not generate

elementsof the causal group of (1R
4, [i~]) with, in fact, hasdimension 11 ([8]);

ten of those dimensionscorrespondto the isometriesof r~(Poincarégroup or
inhomogeneousLorentz group— and the other one correspondsto the scale
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transformationgeneratedby the (complete) field S. It is remarkablethat this

casualgroupactsin anaffine way on R4([8]).

Example2. 51 xS3, with S1 :={(u...
1,u0)EIR

2 :u~
1+u~=l} and S

3 :=

={ (u
1, u2, u3, u4) E JR

4 : u? + u~+ u~+ u~= 1 } (with the usual coordinates

in JR2 and 1R4 respectively), is a four-dimensionalconnectedmanifold. If we
denote by 1 and h the standardRiemannianstructuresdefined on the spheres
~i and S3, then g : = —in h is a Lorentzianmetric on S1x S3. In this way is
obtainedthe CST(S’ x S3, [g]).

The map a : IR —* S1, s i-~(coss,sins) is a local diffeomorphism and takes

the standardvector field on IR onto a global vectorfield X on S1. Takingin the
obvious way X as a vector field on x S3, X is a globally definedtimelike field

(it is easyto show that g(X, X) = — 1). ChosingX as <<future>>,S1x ~3 becomes
time-oriented.

ThisCST doesnotsatisfythecausalitycondition.Nevertheless,if we considerthe
universal covering 4’ : IR x S3-+S’ x ~3, (s,p) i-+ (a(s),p), the CST (JR x S3.
[‘4’*g]) becomestime-orientedand satisfies the causality condition, (We have

= — dt2 oh).

3. OBSERVERSAND REFERENCE FRAMES

An observer is roughly speakinga personwho identifies the events of his

history with the readingof his clock; inevitably an observer<<moves>> through
space-timetowardsthe future. The simplestmathematicalrepresentationof an

observeris given by a timelike future-directedcurve,whosetrajectoryrepresents
all his history, and whoseparameterrepresentsthe observer’snotion of time.

DEFINITION 5. Let (M,’1) be a time-orientedCST. An observeron M is a time-
like future-directed curve y : JR D ~ -÷M, whose parametrizationdefines the

observer’sproper time.

Any reparametrizationof the curve ‘y representsa change in the observer’s
way of measuringtime and, in fact, a change of observer;if a personchoosesa

certain physical processeasily reproduciblealong his trajectoryin the spacetime
as a clock (for example,someatomic transition occurringin a piece of matterhe

brings along), he is parametrizing,in an univoqueway, his trajectory, and so
defining an observer.

Strictly speaking,an observercan only registereventswhich take place along
his trajectory in the space-time.To obtain information about any otherevents

he needsthe cooperationof otherobservers,who, in additionto himself consti-
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tute a referenceframe.

DEFINITION 6. Let (M,~6)be a time-orientedCST. A referenceframe (RF) in

M is a future-directedtimelike vectorfield Q definedon an opensubset U C M.

Eachoneof theintegralcurvesof Q will be calledanobserverof Q. The reference

frame is global if U = M; in any othercaseis local.

A corollaryof Lemma2 is the following

LEMMAS. A time-orientedCSTadmits a global referenceframe.

To be operativea referenceframe Q must providea notionof <<simultaneity>>,
what implies that the region U where Q is definedcan be <<sliced up>> by three-

-dimensionalspatial submanifolds,orthogonalto every observerin Q, andbeing
<<level hypersurfaces>>of a certain time-function t definedon U: in that caseQ

will be called synchronizable.If the time function coincides,for every observer
of Q, with the propertime of the observer,Q is called propertimesynchroniza-

ble. In general,this coincidencewill not takeplace;neverhelessthe observersof
Q have an explicit way to compute,from the read out of their clocks (and
assumingthat the hour of all theseclocks is adjustedto a standardvalue on a

certain surfaceof simultaneity) which one is at every momentthe surfaceof
simultaneity they are <<crossing>>.We are going to precisethesedefinitionsright

now.

DEFINITION 7. Let (M, ~) be a time-orientedCST. A RF Q with domain U C M

is synchronizableif, given g E ~ we can find functionsh, t on U, with h> 0

andsuchthatg(Q,.) = —hdt. We will say that t isa timefunction for Q.

Note that if the condition of synchronizabilityis fulfilled for someg E’6 ~
it will be fulfilled also for any otherg’ E ‘6ILT. The following Lemmajustifies

theterminologyusedin this definition.

LEMMA 6. Let (M,”6) be a time-oriented CST and let Q be a synchronisable

referenceframe with domain U C M. Let t be a time function for Q. Thenat

eachpoint m E U there existsoneunique three-dimensionalsubmanifoldortho-
gonal to Q (and thusspatial) and maximalin U Thissubmanifoldcorrespondsto

thehypersurfacet = t(m).

Proof. It is straightforward,taking into accountthat Q A dQ = 0 (Q being the
I -form g(Q, . )) andapplying the Froubeniustheorem. •
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DEFINITION 8. Let (M,6) be a time-oriented CST. A synchronizablereference

frame in M, Q, is said to be proper time synchronizableif thereexistssometime

function t for Q suchthat Q(t) = 1,.Wewill call t (now uniqueup to an additive
constant)the proper timefunctionfor Q.

LEMMA 7. Let (M,’6) be a time-oriented (‘ST and let Q be a proper time syn-
chronizablereferenceframewith domain U C M, t beingtheproper timefunction

for Q. Then t coincideswith the proper timeof eachoneof the observersof Q
(up to an additive constant).

The proofof this Lemmais trivial.

The following Lemma(whoseproof is also trivial) establishesthat a reference

frame endowsin an unique way a metric the region of the CST in which it is
defined, so that the propertime of eachone of its observerscoincideswith the
arc—lenghtmeasuredalongthe correspondingtrajectory.

LEMMA 8. Let (M,’6) be a time-orientedCSTand let Q be a referenceframe

with domain U C M. Then, there existsan unique Lorentzian metric gQ E

definedon U suchthatgQ(Q, Q) = — 1.

LEMMA 9. Let (M,’6) be a time-oriented(‘ST and let Q be a referenceframe
with domain U C M. Then Q is proper time synchronizableif and only if there
existsa functionton Usuch thatgQ(Q, .) = —dt.

The proofis trivial.

Now we are going to deducesome propertiesof the referenceframesrelated

to their associatedmetric connections.If Q is a referenceframe, we will denote
by ~ the Levi-Civita connection correspondingto gQ. Firstly note that the
condition gQ(Q, Q) = constantis necessarybut not sufficient for Q to be a
geodesicfield of V~.One of the propertiesof a proper time synchronizable
RF is to begeodesicfor the inducedmetric connection:

LEMMA 10. Let (M,’6) be a time-oriented (‘ST and let Q be a proper time

synchronizablereferenceframeofM. Then Q = 0.

Proof The proof is a straightforwardconsequenceof the fact that v~satisfies

the Ricci-identity andhaszero torsion.
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Someproper time synchronizablereferenceframes <<factorize>> their domain

in spatial and temporal parts, preservingthe conformalstructure,as we precise

in the following:

DEFINITION 9. Let (M,’6) be a time-orientedCST. A propertime synchroniza-

ble RF Q with domain U CM is said to be afactorizer(FRF)of Uif thereexists
a diffeomorphism 4 : T x S-÷U, being T a certain open interval of JR andS a

certainthree-dimensionalmanifold, suchthat:

(i) It holds ~,, a~= Q, a~being the standardfield on T consideredas vector

field on TxS.
(ii) Thereexist Riemannianstructures/andh on Tand 5, respectively,so that

1 is a causaldiffeomorphismfrom (Tx 5, [—In h]) onto(U, ‘6I~).
That definition of FRFcorrespondsto the notion of <<metric observer>>given

by Segal ([2]) and includesthe <<comoving frames>>of the classicalcosmological

models.

The propertiesof factorizersare summarizedin the following:

LEMMA 11. Let (M,~’) be a time-orientedCST, and let Q be a FRFof UCM.

Usingnotationfromdefinition 9 wehave:
(a) 4~*gQ= — dt2 efh, f being a certain (positive-definite)function on the

first factor in Tx S. Therefore,to cl~is a propertimefunctionfor Q. (We denote

by t both the identity chart t and the mapping ~o [Ii, with : T x S —i- T the

canonicalprojection).

(b) Thefollowing statementsareequivalent:

(i) Translations on T, a : Tx S-+ Tx S. (t, s)—~ (t + a, s) (with t, t +

+aE T) are causalon (Tx S, [—lnh]).

(ii) translationson Tare isometriesof themetric ~*gQ.

(iii) thefunction ffrom (a) is constant.

Proof

(a) Obviously ~*gQ = ~(— /0 h) = ~ ~(—dt2 n ~ h)~~ (resp. ~) being

a positive-definitefunction on Tx S (resp. on 7).

Buth: —1 =gQ(Q, Q)=(~*gQ)(ar, a~)=—~i,1i; thus 4*gQ =—dt2~fh,

withfE l/i,li.
(b) Because of L~(~I*gQ)= L~(—dt2 nfh) = On (a~f)h,we will have:

(i) ~ (ii) Assume (Vg E [— 1 n h]) L
1g = ugg, for some function og;

taking g~4*gQ,the above remark leads to
0g= 0, thus
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L1(4*gQ)= 0. Conversely, if L~(~*gQ)= 0, we will have:

L~g La(f ‘~*gQ)= agg, with = (1/f ‘)(a~f‘), f’>O.
(ii) ~ (iii) (trivial).

In classical cosmologicalmodelsthe <<comoving frames>> are factorizers.This

propertycomesfrom the propertime synchronizabilityof theseframesand from
the assumptions(justified by the so-called<<CosmologicalPrinciple>> and by the
observationaldata, see [3] and [10]) of spatial homogeneityand isotropy (see

below).

DEFINITION 10. Let (M,’6) be a time-orientedCST. Let Q be a FRF of U(as

in definition 9).
(a) Q is temporally homogeneousif any of the statementsfrom Lemma 11

(b) holds.

(b) Q is spatially homogeneousif (S, h) has a three-dimensionaltransitive
groupof isometries.

(c) Q is spatially isotropic at a point s E S if (5, h) hasa threedimensional
groupof isometrieswhich keepsfixed.

Note that spatial isotropy at any point implies spatial homogeneityand,

viceversa,spatial homogeneityand isotropy at one point imply isotropyat any
otherpoint. It is easyto provethe following lemma,which establishesthe natural
correspondenceamongisometriesin (T, I) or in (5, h) (both definedby a certain
FRF) andcausaldiffeomorphisms.

LEMMA 12. Let (M,’6) be a time-oriented(‘ST and/er Q be a FRFof UCM.

Usingnotationfromdefinition 9, wedefine:

x : Dif(S) —+ Dif(U)

a —+ x(a), with x(a) ~(t, s) : = ~(t, as)

and

~ :Dif(fl—+Dif(U)

b—+~(b), with ~(b)4(t,s) :=4.(bt,s)

beingDif( ) the setofdiffeomorphismsof themanifoldonto itself

Then it follows that a [resp. b] is an isometry of (5, h) [resp.(T, I)] iff x(a)

[resp.~(b)] is causalin (U, ‘6I~)iffx(a) [resp.~(b)] is an isometryof(U,g~).
It follows from the foregoingLemmathat if a FRF satisfiesthe assumptions
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of definition 10(b) and (c), then the metric manifold (U,g~)will have a (at
least)six-dimensionalgroupof isometries.

It the FRF is also temporally homogeneous,then the group will be at least

seven-dimensional.Note that the maximumdimensionof the groupof isometries
is ten ([7]).

In the Lemma 10 it hasbeenshownthat a propertimesynchronizableRF Q is
geodesicfor V Q. The following Lemma shows that if Q is also factorizer and

temporallyhomogeneous,then it is parallel for V ~

LEMMA 13. Let(M,’6) be a time oriented(‘ST and let Q bea temporally homo-

geneousFRFwith domainU C M. ThenV~Q = O,for everyfield X definedon U.

Proof. Q beinga FRF, it follows from Lemma 11(a) that in a neighborhoodof

any pointof U coordinates(x0,x1, x2,x3) exist suchthat

gQ= — dx0ndx0 +f(x0)h~(x1,x2, x3)dx’ n dxi, I = 1,2,3,

and

a
Q~ —.ax°

In suchcoordinates,the coefficientsof the metricconnection~ are:

r~=r
0~=owith a=O,l,2,3

= 1/2 ~Jf/f

F~1O=l/2fh.,1

l~= 1/2 h~’(hflk+ hkl/ h/k,!) with i,j, k, 1 = 1, 2. 3.

Let X be a field on U. with coordinatesX = X°a/ax°,

I. - I.
= XOFt 8/ax~= XT!~8/8x’ = X~ — ö! 8/8x’ = — X’ ö/8x’X o0 2f

1 2f

As Q is temporallyhomogeneous,f = 0 (Lemma 11(b)); thusV~Q= 0. •

Finally, and before going to the examples,we must take into accountthat a

causal diffeomorphism mapsa referenceframe into another one with identical

propertiesof synchronizabilityandsymmetry:

LEMMA 14. Let (M,’6) and (M’, ‘6’) be two time-oriented (‘ST. Let ‘1 he a
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causaldiffeomorphismofM ontoM’, and let Q be a referenceframe in M. Then

~ Q is a referenceframe in M’ and eachoneof the followingpropertiesis true
for ‘1Q if it is truefor Q:

(i) beingsynchronizable

(ii) beingproper timesynchronizable

(iii) beingfactorizer

(iv) being temporallyhomogeneous
(v) beingspatially homogeneous

(vi) beingspatiallyisotropic ata certain point.

Provingthis lemmais only a merequestionof calculus.We will two reference

framesQ, Q’in M conjugateif thereexists a causaldiffeomorphism4 suchthat

~ Q = Q’.

Example3. In the conformalversion of the Minkowski spacetime(lR4, [n])(see

example I), the vector field a/ax°is a global (and complete)referenceframe,
with g~X°= ~, and proper time synchronizable,the proper time being the

coordinatex0. Moreoverit is a factorizerof lR4, temporallyhomogeneous,spatially
homogeneousand spatiallyisotropic.Thereare no otherknown global complete
factorizersin (1R4, [a])with the samepropertiesof symmetry but nonconjugate

to a/ax°([2] p. 46). We will call inertial thoseRF on (lR4, [n])which areconju-

gate to a/ax°by elementsof the group of isometriesof ~ (10-dimensional

Poincarégroup).

Example4. Let (JR x ~3, [— dt~0 h]) be as in example 2. Let Q be the field

on JR consideredas a vector field on JR x S3. It is straightforwardto check
that Q is a global (and complete)referenceframe, with ga = — dt2 0 h, and
propertime synchronizable,with t as propertime. FurthermoreQ is a factorizer
of (JR x ~3, [— dt~Oh]), temporally homogeneousand spatially homogeneous

and isotropic; in sphericalcoordinates(p, i~,~p)(see Appendix) the expression
of h is h = dp n dp + sin2p (d~n di~+ sin2i~dp ® d~).There are no other
known global completefactorizersin (JRx S3, [— dt2Oh]) with the samepro-

pertiesof symmetrybut non conjugateto Q ([2]. p. 48).

4. RED SHIFTS

Let us assumethat, in a piece of mattercomovingwith a certainobserver‘y,
a particular and fixed atomic transitionwith emissionof light takesplace.During
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an interval of propertime ~r, n pulsesof light are emitted (2); the frequencyof
the emission,observedby ‘y, will be,then,

n
pEl-> L~r

Let us assumenow that the n pulses are receivedby anotherobservery’,
during an interval ~r’ of his proper time; the frequencyof receptionobserved

n - p
by 7’ will be ~R = — and theratlo betweenboth frequenciesr : = ~_~‘~!~1=

~“RHy
= — . r> 1 (resp. r < 1) means that the emitted frequency,observedby ~

relative to his propertime, is greater(resp.smaller) than the receivedfrequency

observedby y’ relative to his propertime. It is said then that y’ observesa red
shift (resp.a blue shift) relativeto theobservationsmadeby ~.

In astrophysicalmeasurementsthe emitter is a staror galaxy and the receiver

is an observeron Earth. But, as direct observationjust where thelight is emitted
is impossible,the frequencyof the receivedlight is comparedwith the frequency
of the light emitted on Earthby the samelight sourceas in the galaxy.To inter-

pret the correspondingfrequencyratio it is assumed(physicalhypothesis)that
the proper time interval takenby the emissionof a pulse is the samefor every

observer,provided that light is producedby the samephysical processand the

clocks which measureproper timesare physically identical.This is a reasonable
hypothesis, becauseit is expected that different positions in spacetimewill
eventually affect in the sameway the processof light emission and the clock

whichmeasurestime.
In some cases,a value r ~ I for the frequencyratio can be interpretedas a

Doppler effect (see example5) causedby the relativemotion betweenthe light

sourceand the observatoryon Earth(this is e.g.the casefor signalscoming from
artificial satellites,as studiedby special relativity in the absenceof gravitation;
see [10], §2.2, and [3], §5.4.2),or as due to the gravitational field along the
light path (for example,in the caseof signals propagatingthroughstrongstatio-
nary gravitationalfields, as studied by the Einsteintheory;see[10], §3.5, and

[3], §7.2 and §7.4.3).Neverthelessit doesnotseemthat thesystematicobserva-
tion of values r> 1 for the spectral lines coming from most of galaxiesand
quasars(the so-called cosmologicalred shift) can be interpretedin the above-

(2) It doesnot seemthat an analysisof the cosmologicalredshift would needa quantum
approachto the radiation. In fact, the quantumtreatmentof the Segal’smodel has,in what
concernsto the red shift,an immediateclassicalgeometricalanalogile
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-mentionedway; the most generalizedinterpretation is still basedon the so-

-called <<expansive>>cosmologicalmodels([10], chapters14 and 15;also example
6).

As we are going to see in brief, a time-orientedCST (M,’6) providesan appro-

priate framework to analyze the cosmologicalred shift, providedthat light are

assumedto be (when suitably parametrized)null-geodesicsof any Lorentzian
metric compatiblewith the conformalstructure(seesection1). It is alsonecessary

to postulatethe cosmological relevanceof a global FRF Q. Specifically,any of
the so-called<<typical>> galaxigs(i.e., whosetrajectoriesare approximatelythose
of the meanmatter, see[10], chapter14; our galaxy canbe consideredas typical,
see [10], p. 110) will move along a world line describedby an integral curvey of

the postulatedFRF Q; and the parametrizationof such curveswill representthe
ones obtained along the correspondingworld lines with physically identical

clockscomovingwith eachone of thesegalaxies.

DEFINITION 11. Let (M, ~) be a time-orientedCST and let’y : e —+ M, ‘y’:c’ —÷ M

be observers.
Assume that there exists a bijective function (‘~f: [c, d] -÷[c’, d’] (with

[c, d] C e, [c’, d’] C e’) suchthat Vr E [c, d], ~ a lightlike future-directedcurve

between‘yr andy’fr which is geodesicfor someg E ‘6.
In this casewe definethe proper time ratio r between7 and ‘y’ at ‘y’fr0 (with

r0E [c, d]) as:

df
r:= —

dr
1~0

Remarks

(i) It is knownthat, given g, g’ E’6, any lightlike geodesicof g canbe suitably

reparametrizedto be lightlike geodesicof g’ (see [3], p. 132), the foregoing
definition beingthusindependentof the choseng.

(ii) As mentionedabovelightike future-directedcurves which representlight

trajectoriesare thosewhich allow reparametrizationsmaking them geodesicsof
any g Ec6. Thus it is guarantedin the foregoingdefinition that thereexistssome

light path between‘yr and ‘y’fr, ‘dr E [c, d].
The uniquenessof this trajectory is not guaranted(nor, hence,theuniqueness

of f), unless some additional assumptionis made about <<simpleconvexity>> ot
certain open set containing‘y([c, d]), -y’([c’, d’]) and the rangesof all correspond-

ing null geodesics.
(iii) The above-mentionedproper time ratio r depndsonly on ‘y, ‘y’, r°and

on the available f and represents the infinitesimal version of the ratio
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if r> 1, the receiverwill observea red shift. (In cosmologyit is commonly

usedthe <<red shift indexvz : = r— 1).

The following lemma provides a method to compute r as a ratio between
scalarproducts.

LEMMA 15. Let (M,’6) beatime-orientedCST.Let ‘y,-y’,f, r
0be as in definition

11. Let be gE c~and A :[a, b] —÷M,with Xa = ‘yr0. Xb = ‘y’fr0, the lightlike
future-directedgeodesicof g whoseexistenceis assumedin the definition 11.
Then it holds:

g(X~a,‘y~r0)

g(A~b,‘y~(fr0))

Proof Let A
T : [a, b] —÷M, with XTa = ‘yr, X~b= ‘y’fr, be the corresponding

lightlike future-directedgeodesicbetween‘yr and ‘y’fr, Vr E [c, d] (with X’° =

= A). Let be ~ : = [a, b] x [c, d] C JR2 and a : ~-÷M defined by o(u, r) : =

= ATu. Then it holds g(a * a/ax1,a * a/axi) = 0 (constant); if follows (Gauss

lemma,see [3], §5.0.3) that g(u * 8/8x1,a a/ax2) is constant along each
geodesicXT(xt, x2,standardcoordinatesin 1R2).

So, we canwrite:

df~L
andweobtain

df g(A~a,‘y~r
0)

= -
dr g(X~b,’yfr0)

Remarks

(i) The resulting value of r is not changedif anotherg’ E ‘6 insteadof g is

chosen(what is reasonable,becauser is independentof g). In fact what happens
is that the contribution from the conformal factor a (with g’ = ag) on both

curves ‘y and ‘y’ cancels the contribution coming from the reparametrizationof

the curve A to maintainits geodesiccharacterwhile changingg by g’ (specifically,

di3
the new curve A = Xojl, with (3: [A, B] -÷ [a, b], satisfies A~u= ~ (3~- ~-~- =

= AIlu).
a(Xf3u) *

(ii) The abovementioneddependenceof r on ‘y,’y’ and r0 is actually a depen-



COSMOLOGICAL REDSHIFT IN CONFORMAL SPACETIMES, ETC. 73

denceon the tangentvectors * r0and ‘yfr0.

COROLLARY. With theassumptionsofLemma15 thefollowingholds:

g(A~a,‘f~r0)

g(A~a,11ff 0-y~(fr0))

being ~ffa the parallel transport defined by the Levi-Civita connection, V~

along the curveA betweenthe pointsAb = ‘y’fr0and Aa = -yr0.

Proof It follows inmediatelyfrom the factsthat 11~preservesthe scalarproducts
definedby g and that A is geodesicof ~

The next theoremestablishesthat betweentwo observesof any temporally

homogeneousFRF (not necessarilyglobal) thereis no red shift.

THEOREM 1. Let (M,’6) be a time-oriented(‘ST. Let Q be a temporallyhomoge-

neousFRF. Then for any pafr of observersof Q, ‘yand-y’, assumingthe condi-
tionsfrom definition 4.1, theproper time ratio is equal to 1.

Proof. In the corollary of Lemma 15, let us take g : gQ. As Q is temporally

homogeneousFRF, it holds (Lemma 13) V~Q = 0, Vu E TM and, because

~ ~ it follows that flff ~(~y~fr0)E
11ff a(Q(?~~)= Q(Aa)~’y~r

0.Thus
r=l.

Example5. Let (1R
4, [ri]) be the conformalversionof Minkowski space(example

1). Let us considertwo conjugateinertial referenceframes,rand~(example 3).
We are goingto describetheso-called<<relativistic Dopplereffect>>.

Assume without loosing generality that ~‘ = a/ax°and f~= ~a/ax°+
+ b(3a/ax3, with —1 <13< 1 and ~ = (1 j32)_ 1/2 We say that observersof

~ move with velocity (3c relativeto ~ (c beingthespeedof light) in the direction
of the x3 coordinate.It is clear that ~ can be obtainedfrom ~ by meansof the
Lorentztransformation4 : JR4—+ 1R4, 4(v) = Au, with

& 0 0 ~j3

0100

O 0 1 0

~3 0 0 ~

Let us choosethe following observerof ~‘, ‘y’ : JR -+ JR4, ‘y’r = (r, 0, 0,0) as
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the light receiver,andsomeobserver’yof ~ as theemitter,Ouraim is to compute
the propertimeratio r betweeny and’y’ at y’f 0. Takinginto account:

(a) ~ and ~ are conjugateinertial RF,so

g~=g~=n

(b) ~ and ~ are temporally homogeneousFRF, thus for everycurve a : [a,

b] -+ IR4, it holds(Lemma13):

Hff~(~‘(ab)) = ~‘ (aa)

and

I1ff~(~1(ab))=

andapplying thecorollary of Lemma 15, we obtain:

n(A~a,~(’yO)) n(A~aj~(-y0))
= =r

n(A~a,~(‘yO)) 77(A~a,fl~a(?~(’y’f0)))

A : [a,b] -÷JR4 being a lightlike geodesicof i~betweenyO and y’f0. Without

loosinggeneralitywe canwrite:

a a a a
1 2 3 - 12 22 32Aa= —+a —+a —+a — (Aa),witha +a +a =1ax° ax1 ax2 ax3

(lightlike). It follows that:

r = ~(l —(3a3).

Transforming to spherical coordinates(x0, x1, x2,x3) —÷(x°,x’~,x’3, x~°)(see

Appendix) it can be seen that cf3,. — /3ca3 representsthe radial componentof

the relativevelocity betweenemitterand receiver.
Now r = ~(1 + (3-y), whichis a well-known result (see[10], 2- 2).
For observersmoving away from eachother(13,.> 0) a redshiftwill beobserved

(r> 1). In a similar way, a relative approximation implies an observedblue-

-shift.

Example6. Let Q be a FRF on a time-orientedCST (M,’6), with 1 : TxS-÷

-~ UCM. Rememberthat ~ = Q, ~‘gQ = —dt2nfh, for some function
f>0 defined on TCR. Our aim now is to computethe proper time ratio r

betweentwo observersof Q. (We do the computationin (Tx S,[—dt2nfh])).
Defining t’ : = ,fr’~2dt, we obtain a~.=f1I2a~anddt’ =f~2dt. From the

expression:— 1 = git (a~, a~)= fg ~‘ (ar, a~)we deducethat g>3 t = f~ig>t =

= —f’ dt2oh = — dt’2 Oh; then ~ is a temporally homogeneousFRF. Be-



COSMOLOGICAL REDSHIFT IN CONFORMAL SPACETIMES, ETC. 75

causeof theorem1, the proper time ratio r’ betweenobserversof a/at’ is equal

to 1.
But, if we considerg E [— dt

2 Of/i] and A lightlike geodesicof g, weget(from

Lemma15)

— g(A~a,a~xa) (fot(Aa))~2g(A~a,a~~(Aa))—
r — g(A~b,a~Xb)— (fot(Ab))1I2g(A~b,a~(xb))—

fo t(Ab) 1/2 fo t(Ab) 1/2=( r’=(
fot(Aa) fot(Aa)

This result is more general than the one obtainedfor the cosmological red

shift in the Robertson-Walkermodels(see[10]), because(spatial)homogeneity

and isotropy are not imposedto the h. In suchmodelsthe factorVTis known
as the <<expansionfactor>>. A value r> 1 means, becausethe metric in eachof
the spatial hypersurfacesis given by f(t)h, that <<the universeis expanding>>.

5. THE SEGAL’S MODEL

In this section we are going to describebriefly the cosmologicalmodel of
I.E. Segal.The readerwill find in [2] a detaileddiscussionof the physical and
observationalfeatureson which the model is based,and the proofs of some of
its fundamentalresults.We haveconsideredconvenientto changethe terminology
usedby Segal (sometimesobscurefrom the point of view of differentialgeome-

try) into the notationsdevelopedin sections 2 and 3 of this paper.We shall
begin with the basic assumptionsof the Segal’s model ([2], ch. III - 1, 2), which

consistsin a triplet (M, %~,Q). (M,’6) being a time-oriented (‘ST (3) verifying
the causality condition and Q being a certain global completeFRF on (M,’6),
spatially homogeneousand isotropic and temporallyhomogeneous.

The hypothesisaboutthe spatialhomogeneityand isotropyof the FRF Q, in

addition to be a reasonablerequirementto approachin a simplified way many
of the analysis of cosmologicalobservationaldata, is also a consequenceof
applying the <<cormologicalprinciple>> to the observationsdoneon Earth,around

(3) Initially Segalpostulateswhat he calls an <<infinitesimal causalorientations for the
spacetime.Later he takesthe <<conessof that structureasbeinginducedby locally Lorentzian
metrics (or, equivalently,by a time-orientedconformalstructure).Thefact that Segal’sdiscus-
sion about the impossibility of inducingthose sconessby Finsleriannon-Lorentzianmetrics
is not conclusivefor dimension4 has pushedusto include here explicitly the time-oriented
conformalstructure amongthe basic assumptionsofthe model.
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which the universeappears,on a largescale,very aproximatelyisotropic(seethe
commentto Lemma 11). In this sense,Q is that FRFwhoseintegralcurvesrepre-

sent the mean trajectoriesof matter in spacetime.Temporal homogeneityis
necessaryfor the flux of the mentionedFRF to be a one-parametersubgroup

of the causalgroup of spacetime(see Lemma 1 lb). In [2] physical arguments
are given which, after Sega!, favour the latter postulate:the obtentionof a time-
-independent<<state>> concept,the notion of a well defined <<energy>>, and an

energy conservationlaw. Note that classicalcosmologicalmodelsdo not satisfy
this property,becauseincluding temporalhomogeneityfor <<comoving>>reference

framesimply, in GeneralRelativity,that themetric spacetimeis static and cannot
offer a convincing explanation of the observed cosmological red shift (see

example6).
It can be provedthat there exist only threespacetimeswhich satisfy these

assumptions([2], p. 58 - 59),namely:
1) (lR4, [n])(see examples1 and 3), conformal version of Minkowski space,

having a causalgroupof dimension11 [8].

2) A CST causallydiffeomorphic to a certain open submanifoldof (S1 x S3,
[—1o h]) (see example2), havinga causalgroupof dimension10.

3) (JR x ~3, [— dt2 0 hI) (examples 2 and 4) which has a causalgroup of
dimension15 (seeLemma21 below), i.e., maximal.

Segal arguesthat, as thereexist causaldiffeomorphismsof the first two (Lem-

mas18 and 19 below) into open subsetsof causalmanifoldswhich are covered
by the third one, and as the causalgroupsof the first two are essentiallysub-

groups of the causalgroup of the latter one, (JR x ~3, [— dt2 o h]) must be
considered((universal)), and thusit mustbe takenas a spacetimefor a cosmolo-
gical model.

Concerningthe FRFpostulatedin the model, as we said in example4 it must
be conjugateto the field a~on JR x S3 sowe do not loosegenerality(seeLemma
14) by taking a~asthe FRFof themodel.

Now we are going to give the definitions and basic results which allow to

consider the Segal’s CST (JR x ~3, [— dt2 oh]) as the universalcovering (4) of
the conformal compactificationof Minkowski space.

DEFINITION 12.

(a) Let b be a scalarproduct on JR6 with signature(— — + + + +). Let us
considerthe projectivespaceFIR6 we shall denoteby ~3EPJR6, with w ~ 0 E

(4) When we say that a time-orientedCST scoverssanotherone it is understoodthat the
coveringmappreservestheconformal structureand time orientability(see Lemma4).
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E JR6, the class 13 : = {y E lR6/y = Aw; A(~�0) E IR}. We define the projective
quadricB inducedby b as the set;

B :={&SEPJR6/b(w,w)=0}.

(b) Let us considerthe groupGL(6, IR); eachelementTE GL(6, JR) induces

a transformationT : FIR6 —+ FIR6, ~ ~-÷(n.,). Let be the subgroupof GL(6, IR)

0(2, 4): ={TE GL(6, IR)/b(Tw,Ty) = b(w, y), Vw, yE lR6}.

We definetheprojectivegroup0(B) ofthe quadricB as theset

0(B) : =•{ T/TE 0(2, 4)}.

(It is clearthat 0(B), actingon the quadricB, keepsB invariant).

LEMMA 16. LetB and0(B) be as in definition 12. Thenwe have:

(a) B has the structureofa four dimensional(‘~compactmanifold.
(b) 0(B) has the structure of a Lie group, isomorphic to 0(2, ~)‘~2’ and

under whoseaction B is an homogeneousspace.

(c) Thereexistsan uniqueconformal structure on B such that the action
of 0(B) on B is conformal(i.e.: p*’6B = ‘6B, Vp E 0(B)).

Proof. See[2],scholium2.9,page38.

LEMMA17. Let (S1 xS3,[—loh]) be the time-oriented(‘ST from example2.

Let (B, ‘6B) bea (‘STasabove. Then it holds:
(a) The map 11 : x —÷B, ((u 1, u0), (u1, u2, u ~, u4)) ~ ~, with (u 1)2 +

+ (u0)2 = 1 = (u1)2 + (u2)2+ (u3)2 + (u4)2 and w = (u1, u0, u1, u2,u3,u4)E
E 1R6, is a doublecoveringand it is conformal(i.e.: H * = [—10 h] ~

In fact (B, ‘6B) is conforinally diffeomorphic to (5’ x 53/{J, —I}, [—10 h]),
I (resp. —I) being the identity (resp. theantipodalmap)on S~x S3.

(b) The time-orientation in (S1 x S3,[—10 h]) (example2) is invariant under
the antipodal map —I,- thus the CST (B, ‘6B) becomestime-orientedand the
mappingH is causal.

(c) The causalgroup of (B, ‘6B) is isomorphicto S0
0(2,~ (thusmaxitnal,

seeLemma3), under whichB is still an homogeneousspace.

Proof See[2],scholia2.lOand2.11.p.39-40.

LEMMA 18. Let be the time-oriented(‘ST (B, ‘6B) as aboveand let (IR
4, [77]) be

like in example1. Then the map:
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/ : (JR4, [i~]) —+ (B, ‘6B), x i—~~, with

i~(x,x) 77(X,X)
w=l+ ,x0,x1,x2,x3,I— EIR6,

4 4

isa causaldiffeomorphismonto its image,which is densein B.

Proof See[2],scholium2.l2andcorollary2.13.l,pages42-43.

We shall call (B, ‘6B) the conformal compactification of the Minkowski

space.

LEMMA 19. (JR’ x ~3, [— dt2 oh]), as in example2, is the universalcoveringof

theconformalcompactificationof the Minkowskispace.

Proof It follows from Lemmas 16 and 17 and from the compositionfl ‘I’ of

causalmaps

(JR x S3, [— dt2O h]) —~-+ (S’ x S3, [—10h]) —~--+ (B, ‘6B)

(‘I’ is definedin example2 and 11 in Lemma 17, (a)). U

REMARK. If we denoteby s the sectionof the coveringmap H o ~ which takes

the point:

&iEB (with w=(l,0,0,0,0,l)EIR6)

into the point:

(t=0, u~=0, u2=0, u3=0, u4=l)EIRxS3,

thens is givenby

t=arcsin 2 2

(w~’ + w0 )1/2

(i= 1, 2, 3)
Wi

U = 2 2 -

(w~1+ w0 )1/2

We can summarizethe maps we haveintroducedup to now in the following

diagram
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JR6—f PJR6 j (B, ‘6B) ÷‘_ (JR4, [n])

5 ( (S1xS3,[—loh])

t~\

(JR x 53, [~ dt2oh]).

Thus the compositions oj: (JR4, [‘q]) —~ (JR x ~3, [— dt2oh]) is a causaldiffeo-
morphismonto its image(seethe foregoingLemmas1 8 and 19).

We are going to provealso that s0/is the well known conformalmapof the

Minkowski space into a region of the staticEinsteinspace(JR x ~3, — dt2 o h),
givenfor examplein [6],p. 118-121.

LEMMA 20.

(i) The map (s oj) : JR4—+ x s3 is given, in the correspondingcharts (see
Appendix)by the expressions:

t = arctan
rj(x, x)

1+
4

x~
p = arctan

4

and it establishesa diffeomorphismbetweenIR4 and the open set U dR x S3
definedby

—7r<t+p<lr

—iT <t —p<a-
with p~0

0~ó<s~ir

0 ~ p < 2ir

the inversediffeotnorphismbeinggivenby:

t+p t—p 2sint
x0=tan +tan =

2 2 cost+cosp

t+p t—p 2sinp
x~=tan —tan =

2 2 cost+cos~
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(ii) It holds

(50j)1*77 (—dt2oh)~~.
t+p t—p

cos2 cos2
2 2

Proof The composition(s oj) is given, in the usualcoordinates(x0, x1,x2,x3) of

1R4, by:

(x0 x1,x2 x3) /
Lemma 18

r7(x,x) 77(x x)
with: w : = 1 + ,x0, x1,x2,x3,1—

4 4

sectionof H 77(.v, x) r~(x,x)
I ‘ k I + , x~,x1,x2, x3, 1 — _____

(Lemma 17) X 4

rj(x,x) 2 2 1/2

withk := 1+ +x°
X

sectionof4’ ri(x,x)

(Ex. 2) > ~ u1 = k~x’,u2= k~x2,u3 = k~x3,u4 = k~(l_ 2

x0
with t = arc tan

rj(x, x)
1+

4

Taking into account the changes(see Appendix) (x0, x’, x2, x3) ~-+ (x0, xr, x~,

x<~’) and (t, u 1, u 2 u 3) ~ (t, p, ~, ip), the desired expressionfor (s o/) follows.

Therest is trivial by usingcertaintrigonometricalidentities. U

We next summarizethe basicresult aboutthe causalgroupof the Segal’sCST.

LEMMA 21. The causal group of the time-oriented(‘ST(JRx S3, [— dt2 oIl]) iS

isomorphic (as Lie group) to the group SU(2,2) (G denoteshere the universal

coveringof G).

Proof It follows from the following facts:

(i) (B, ‘6B) is a time-oriented CST (Lemma l7.b), on which the connected
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group50O~2’~ actscausallyand transitively(Lemma 1 7.c).

(ii) SO~(2,~)/~2 is isomorphicto SU(2,2)/~4.
(iii) The universalcoveringmap

lb ~I’ : (JR x ~3, [— dt2 0 h])—s- (B, ‘6B)

is causal(example2 andLemmal7.b).
(iv) [2], scholium2.5. page33.

The causalgroup of the Segal’s CST is then maximal (see Lemma 3). The

expressionsfor the 15 fundamentalfields generatedby the action of the causal
group are given in the Appendix(5).

Now the questionis the following: given an observer‘y of a~,which are the

coordinates -y assigns to its neighboring points?.That questionis important.
In fact, the analysis of the experimentalobservationsbeing essentiallyMinkow-

skian (i.e., in termsof (JR4, [ii])), the problemis how to <<transfer>>the interesting
eventsfrom (M,’6) to the conformalvectorspace(T~,M,‘6~)(canonicallyidenti-

fied with (1R4, [ri]), for every pointp on the rangeof’)’).
Let us rememberbriefly how the local coordinatesystemassociatedto an

observer is built in generalrelativity. In this theory, space-timeis represented
by a Lorentzian manifold (M, g). Given an observer ‘y : JR D e -+ M (future-

-directed timelike curve such that g(’y~,‘)ç) = — 1, not necessarilygeodesic)
the proceduregoesas follows ([9], 13.6; [l~, 2.10):

(i) A point c E � is chosenas origin of propertimes(on the curve’y proper
time is given by arc lenght).

(ii) Given a E e, the bunchof geodesicsorthogonalto ‘y~(a)atya generate
(locally) a spacelikehypersurfaceSa~The validity of the constructionrequires

that the <<neighbouring>>region of ‘ye to be coordinatizedcan be foliated by a

family of suchhypersurfaces.
(iii) Four (‘a’ ortonormal vector fields on ‘y, e~(i~= 0, 1, 2, 3), are chosen

with e
0= y~.

(iv) EacheventA in the vicinity of ‘ye canbe locatedby meansof four coordi-
nates:

(5) It is possible to give an alternative descriptionof the Segal’smodel in termsof Lie
groups[2]. In that descriptionone beginsby defining time-orientedconformal structureson
both the spaceH(2)of (2 x 2) complex hermitian matrices(consideredas a manifold) and
the Lie group U(2) (universalcovering of U(2)). It can be shownthat bothCST’S are causally
diffeomorphic to (1R

4, [7?]) and (JR x S3, [—dt2~h]) respectively.The analoguerâle to the
above-mentionedmap/ is playedhere by the so-called Cayleymap,which transformshermi-
tian matrices into unitary ones.Such a description,althoughinteresting,is not necessaryat
all to studythe Segal’smodel.
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x0 = a — c ~5a being the spacelikehypersurfacethroughA).
x’ (i = 1,2,3) = i” <<spacelike>>coordinateof A given by the normal chart

(defined aroundya by the exponentialmap of the Levi-Civita connection75)
associatedto the basis e~(a)of T

0M.
Going backto the Segal’s cosmologicalmodel (JR x S

3, [— dt2 oh], ~), let us

considerthe induced Lorentzian metric g1tE [— dt~Oh] (Lemma 8) which is

nothing else but — dt20 h. Given an observer-y : JR —÷M of ~ it is straightfor-
wardto see(asa consequenceof being ~ a temporallyhomogeneousFRF)that
the local coordinatesassociatedto ‘y in the above mentioned sensecoincide

(up to traslationsin x°,and provided that the choice of the <<spacelike>>fields
e. (i = 1, 2, 3) is a suitable one) with the ones assignedby the normal chart

(defined around any point ‘ya by the exponentialmap of — dt2 o h) associated

to the basis e~(a)of TaM (this normal chart takesthe form (Id, x), x being a

normal chart of h on Si). On the metric manifold (JRx ~3, g5t), which corres-

ponds to the static spacetimeof Einstein, the mappingExp_dlt’ oh (or, more pre-

cisely, the inverseof thisexponentialin the regionwhereit is a diffeomorphism)
appearsas the key-mapgiving the local coordinatesassignedby the observersof

Let dIR4 and VC JR x S3beopen sets defined,in the correspondingcharts

on JR4and JR x ~3 (seeAppendix), respectivelyby

0~xT<7r 0~p<ir

and
0~x”<ir 0<~<ir

0~x~2a- 0.~p~2ir.

It is very easyto seethat the aboveexponentialmap definesa diffeomorphism

V~-+ V, given by

x0=t x°=~3

xr=p x~’=p

whoseinverseis the coordinatedefiningmap.

But in the Segal’s cosmologicalmodel there is no metric having an intrinsic
meaningon the space-time.How to define then the local coordinatesystem
associatedto the observersof a~?Segal’s criterion is that this coordinatizationis

given by the map s 0/: lR’~-+ JRx ~3 (more precisely,by the inverseof this map

in the region where it is a diffeomorphism);this mappinghasbeendescribedin
Lemma20.

Concerningthis alternativecoordinatizationthe following remarksshouldbe

made:
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(i) In the Segal’s model, it is in principle a matter of taste to postulatea
coordinatizationby meansof Exp_dlt’ehor to do it by meansof(s oj).

(ii) The map (s oj) is not only a diffeomorphism of the whole JR
4 onto its

image QI (on the contrary, Exp~1t’oh only provides a diffeomorphism of a
certainneighborhoodJ’~of the origin of JR4 onto its imageV) but it is alsoglobally
causal (Lemmas18 and 19) (on the contrary,Exp_dt2oh is only locally causal,see

[2], scholium 2.3). From that point of view, the secondcoordinatizationseems

then to have<<better>> properties.
(iii) From the coordinateexpressionsof Exp~t~0h1and (s oj) (seeabove) it

is easily deducedthat, in the vicinity of the point of observation,bothcoordina-

tizationsleadto the sameresults(up to termsof secondorderin the coordinates).
Therefore,Sega! argues,one must look for experimentalobservationsof events

takingplace in remoteregions in order decideaboutthephysicalvalidity of each
oneof thesecoordinatizations.

(iv) Segalclaims that hismodel,with the secondcoordinatization,

(a) predictsa cosmologicalredshift.
(b) Fits the experimentaldataof cosmologicalredshift better than the

classical(metric) <<expansive>>modelsdo.
Without going into questionsrelatedto (b) (see [11]), we shall seein section

6 that, actually, the coordinatization by meansof (s oj) does not predict any
cosmologicalredshiftat all.

But, before analyzing the claimed cosmologicalreshift in the Segal’s model
we are going to seehow the coordinatizationvia (s 0/) can be expressedin the

languageof the referenceframesdevelopedin section3.

LEMMA 22. Let (JR x S3, [— dt2 Oh]) be the time-oriented(‘STofSegal’smodel.
Let (s oj) :JR4-÷4?1 C JRxS3 be the abovementioneddiffeomorphism(Lemma

20). Let usdefineon Ql the vectorfield dl. : = (s o/) a~,-then it holds.
(i) The Lorentzian metric gtc inducedon QI (Lemma8) is g~= F(— dt2 0

f t+p t—p -~
o h) with F : = cos2 cos2

2 2

(ii) dl. is a temporallyhomogeneousFRF.
(iii) The exponentialExp~~~t2oh) associatedto g ~ in a neighborhoodofthe

point P of JR x ~3 with coordinates(t = 0, p = 0, ~ = 0, p = 0) coincideswith
the map (s o/)

(iv) The vectorfield (22. satisfies:

1 1
(21= — (1 + cos t cosp)~— — sin t sinp a

2 2
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Proof

(1) Because(s oj~’*77 = F(—dt2 oh) (Lemma2Oii), it holds:

F(—dt2oh)(&, dl.) = 77((s oj)~~Q,(s °/)~(2)=
77(a~,~0) = — 1.

(ii) This is a consequenceof Lemma14. Thepropertime functionis

2 sin t
x
0o(soj)~=

Cos t + cos p

Moreover & is complete.
(iii) Follows trivially from the fact that (s of): (1R4, ‘i) -+ (QI, F(— d~2

0 h)~,)is an isometry.

(iv) Writing & = (f a~+ gao) ~ and into account

2 1 + cos t cos p axr

at (cost+cosp)2 ap

axr Sintsinp ax°
—=2
at (cost + cos p)2 ap

and the identity (1 + cos t cos p)2 — (sin t sin p)2 = (cos t + cos p)2, the desired
expression follows.

The toregoing Lemma offers a new perspective on the Segal’s cosmological

model. In fact, the observers of Q = a~give coordinated (locally) to the
spacetimemanifold JR x ~3 essentiallyin the sameway as it is done in general

relativity, i.e., via the exponential map associated to a certain Lorentzian
metric compatible with the conformal structure [— dt2 o hi. The new
features of the model are not in the way of <<giving coordinates>>,but in

the choice of the metric; Segal postulates that <<anthropomorphically possible
local measurementsare representedtheoretically by flat rather than curved
variables; while on the other hand, the true nonanthropomorphicdynamicsand

analysis are curved>> ([2], page 75; here the adjective <<flat>> refers obviously to

the fact that F(— dt2 Oh) is a flat Lorentzian metric, while (— dt~oh) is not).
what is equivalent to say that eachobserverof Q = a~placeshimself~asi.f~the
FRFof which he is an integral curvewould beactually the correspondingt~Jceo-

teredat thepoint ofobservationand notQ.
The following diagram summarizesall we have seenabout the FRF’s Q and
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E

~s3 0= Id JR x S3 D ‘K < C JR4I
Q=a~ a~.

g~=—dt2oh g1x°=_dxO2oz(dxz)2sa77

~ Ex F(—dt2 oh)
JR4~IR1xJR3~ 1’~~ >Q/CJRxS3

(so

~1
a~. (22. =(so/)~a~o

g1X° = — dxO2 0 ~ (dx’)2 77 g = F(— at2oh)

Note

The maps(F and~ are the diffeomorphismsmaking the fields Q and & tempo-

rally homogeneousFRF(Def.9). The exponentialsExp ~, Exp~~ (the last one
coincideswith (F) inducethe respectivecoordinatizations.

Finally the drawing in the next pageboth waysof transferingthe vectorfield

a
0 from Minkowski specetime(wherethe analysisof the experimentalobserva-

tionstakesplace)to Segal’sspacetime(JR x S
3, [— dt2 o h]).

6. DOES THE SEGAL’S MODEL PREDICT A COSMOLOGICAL REDSHIFT?

As we haveseenin section4, a time-orientedCST (M, ~‘) with a global FRF Q
whose integral curves representthe mean trajectoriesof matter provides an
adequateframework to analyzethe cosmologicalredshift (i.e., redshift between

observersof Q). The Segal’s model follows this scheme;and in that sensethe
following theoremis the mostimportantresultof this work.

THEOREM2. Let (JR x S3, [— dt2 0 hJ,a~)be the Segal’s cosmologicalmodel.
Let -y and -y’ be two observersof ~. Thenthepropertime ratio for theradiation
emittedby ‘yandreceivedby ‘y’is equal to 1.

Proof It follows immediately from the temporalhomogeneityof the FRF

and from thetheorem1.
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REMARK. Given any t0E IR, the non-uniquenessof the path followed by light

between -yt0 and the observer’y’ doesnot changeat all that result.
The foregoingtheoremestablishesthat, in the Segal’smodelthere is no cosmo-

logical redshift.
This contradictsSegal’s claim, and we are going now to analyzein detail the

argumentsgiven by Sega! to support the existenceof redshift in his model;and

we shall follow threedifferent approachesto thatquestion.

Previousremark

(1) From now on we shall identify the observers’yand’y’ of Q a~with a
typical galaxyandwith the Earthrespectively(seesection4).

(ii) We shall denoteby G some point on the rangeof’y (correspondingto a
certain proper time r0, ‘yr0 G). Without loosinggeneralitywe can take t(G) =

= p(G) = z~(G)= p(G)= 0. We shall assumethat, on a neighborhoodof G, the

galaxy emits radiation which is receivedat Earth on a neighborhoodof some
point on the rangeof’y’ which will be denoteby T. We shallcall A the light path

betweenG and T with the parametrizationmaking it (seeSection 4) a geodesic

of the global Lorentzianmetric gat Without loosinggeneralitywe shall consider

that this propagationtakesplace with ~ = = constant= 0 (i.e., with u
1 = uZ =

constant= 0), so that we canconsiderA asan integralcurve of the (g~-geodesic)
field a~+ a~.ChoosingAU = G, Aa = T, the coordinatesof the point T will be

t(fl=p(fl=a(0<a<ir),i~(fl=p(fl=0.

Finally, we shall denote by P the point on ‘y with coordinates t(P) = a (0 <

<a<ir),p(P)= s~(P)= ip(P)= 0.
(iii) We shall call Segal -chart centeredat G themap (s oj)~1 : JR x S~D —~

—~ JR4 discussedin section 5.The subcript G meansthat the point G is taken as

the origin of the coordinate system. We shall denote by (xx, x~,x~,x~)the
cartesiancoordinatesin the JR4 of the Segal-chartcenteredat G and by ~22-Gthe

vectorfield (with domain definedby this chart(seeLemma22).

Wheneverwe refer to the Segal-chartcenteredat P we shall use the notation

(s o/)~, (x~°,x~,x, x~),Qi~,&~andsimilarly for the point T.

The point of view supportingthe existenceof a cosmologicalredshift in the

Segal’s model can be summarizedin the following way. If the observer’y’ gives
coordinatesto the manifold by means of the exponentialmap associatedto
gQ = — dt 2 0 h, the integral curves of Q (which representthe meantrajectories

of matter) will correspond(on the JR4 of the chart) to the integral curvesof the
vector field a

0: the cosmosappearsto be ((static)) to the observer’y’.But (Segal’s

postulate)-y’ assignscoordinatesthroughthemap(soj), which impliesthat theinte-
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gral curves of Q correspond(on the JR4 of the chart) to the ones of the vector field

~(x x) x°
+ ~ a~.+ —i-- S (see Appendix): the cosmos does not appear to be

static to the observer -y’ (see later, paragraph B). So, this alternative way to give

coordinates (the only <<anthropomorphically possible>>, according to Segal)
would be responsible for the existence of a cosmological redshift.

We are now going to develop three kind of arguments which show that the

above point of view seems to be incorrect andwhichconfirm the resultobtained
in theorem 2.

A) The first argument is structural-like. The latter point of view can not be
right, simply because different ways (all of them more or less <<subjective>>,
although perhaps only one <<antropomorphicallypossible>>) of coordinatizing

the manifold can not changethe result (<<objective>>, as relatedto thenotionsof
propertime on y and ‘y’) given by theorem2 for the proper time ratio r.

REMARK. To argue that, instead of giving coordinates to the manifold via (s oj),

the observer on Earth <<observesthe meanmatter as if it were following the inte-
gral curves of the vector field dl. : = (s 0/) a~

0>> has simply no senseat all. In

fact, either the trajectoriesof the meanmatterare integral curvesof the global
FRF Q = a~(that is implied straightforwardlyfrom the postulatesof the Segal’s

model), or they are integral curves of the local FRF (22. (both possibilities being

mutually excluding). Anyway, even assuming that we don’t require the global
FRF Q to be the one whose integral curves representthe averagetrajectoriesof

matter in spacetime, it must be remarked that also & is temporallyhomogeneous
(see Lemma 22), so that the conclusion of theorem 2 is still valid for any two
observers of & (actually, any vector field d0 a~0.with d : (JR

4, [rfl) -÷(JR x

x ~3, [— dt~o h]) some causal diffeomorph.ism onto its image, is a temporally
homogeneous FRF; see Lemma 14).

B) The second argument is related to the observationalappearanceof y with

respect to ‘)‘‘. The question is to analyze in what sensethe cosmosdoesnot
appear to be static to the observer‘y’. In order to do that we shall compute the
jacobian matrix at G of the changebetweenSegal-chartscenteredat G and T
(assumingthat each one of these points belongs to the domain of the other

Segal-chart).A simply calculation leadsto:
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1 + cos2a sin2a
00

2cos2a 2cos2a

a(4,4, x~,x~) — 0 1 0 U -

a(x~,x~,x~,x~)G 0 0 1 0

sin2a 1 +cos2a
00

2cos2a 2cos2a

This (linear) transformationcanbeconsidered(in two dimensions,with respect

to the coordinatesx~,x~)as the compositionof a dilatation by a factor
cos a

and the following (two-dimensional) Lorentztransformation:

1 1 +cos2a sin2a

2 cos a sin2 a 1 + cos2a

Comparisonwith the standardLorentz transformation:

a(x~,4)—

a(x~,x~)—

(seeexample5 for interpretation)yields the result

sin2a 1 +cos2a
f3= ,

l+cos2a 2cosa

Thustheobservationalappearenceof the y-surrounding region to ‘y’ is characte-

rized by:

• an enhancementby a factor of the differencesbetweenthe coordi-
cosa

nates(x~,x.) for any pair of eventsnearG, with respectto the corresponding
differences of coordinates (x~,x~)(~contraction of the scales defining (4,
x.) with respectto the onesdefining (x~,x~)).

—sin2a
• a radial relative approaching of -y with velocity jl = 2 (becauser l+cos a

13> 0 and4(G) = — tan a < 0); which is shownin the nextdiagram.

What would be the redshift observed for the radiation emitted by G andre-

ceivedat T?. It is clear that

enhancement+ 1
r approaching = cosa - rapproac~ig.
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(QIg~T)

(1R
4, 7?)

‘0~

I ‘-

T (soj)T
— — — — / 0

But the factor ~ hasbeencomputedin example5 andthe (well known)

result is:

1 + cos2a sin2a
~ = ~(1 + = 2 cosa (l — 1 + cos2a ) = cosa

enhancement+ .so it is clearthat r . = 1 - Wesee again that there is no cosmologi-
approaching

cal redshift in Segal’s model.

REMARK. In [2], 111-7, Segal developsalmost until the end the calculation we

havejust done,andhegivestheexpressionof thejacobian

a(xT)

a(xG) G

It is very surprisingthat Segalobtains([2], 111-6)

2 a
r= =l+tan2—.

l+cosa 2

In out framework this is equivalentto considerthat G and T are on thesame
integral curve of Q = a~.In fact:

Let us considerthe point P on y with coordinates t(P)= a(0 <a < ir), p(P) =

= t~(P)= ~p(P)= 0. It holds:
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2
00 0

I + cosa

a(x~,x~,4, 4) — 0 1 o U

a(xg,x~,x~,x~)G — 0 0 1 0
2

0 00
1 + cosa

which can be considered(in two dimensions,with respectto the coordinates

x~,x~)as asimple dilatation by a factor
1 + cosa

(QI g~P)

(IR
4,fl)

-—

p (soj)~
0

0~~G -

\, ———

If we accept that r is the one given by this scheme,it is clear that it would

follow:

2
r=

1 + cosa

However, the redshift is not causedby a ((temporalevolution)), but rather by

a slight propagation~.This is our main disagreement with Segal (see Section C).

C) The third argumentis basedon a detailedanalysisofSegal’s computation
of the redshift in his model. In this <<quantum>> computationSegal studiesthe

<<temporal evolution>> of the operatorH
0: = 1/i &G_ 1/i(s oj)GOaX,O (m dyna-

mical variable <<apparentenergy>> by meansof which, according to Sega!,the
observerin G analyzesthe radiation he emits),due to the hamiltonian H : =
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= — Q — a~.(m dynamicalvariable <<real energy>>in the spacetimeof Segal),
1 1

during an interval /~t= a (m difference betweenthe valuesof t at the points G

of emission and T of reception).The operatorH0(a) : = ~ would

represent,accordingto Segal,the dynamicalvariable <<apparentenergy>>used by

the observer in T to analyzethe radiation receivedat T and coming from G.

Assumingthat thewavefunction of the radiation(planewave in Segal’sapproach)

is eigenstateof H0 with eigenvalue v~(_emissionfrequency),Sega!obtainsarecep-

l+cosa 2
tion frequencyyR = ~ therefore r = = 1 + tan

2 a/2> J.
2 l+cosa

(i) As it wasmentionedin the footnote of Section 4, it doesnot seemthat

an analysisof the cosmologicalredshift would needa quantumapproach.Weare
going to see now that Segal’s approach has indeed an immediate ((classical))
(mgeometrical) analogue: let us compute the following ratio between scalar

produces:

g8r(Ao &GG) git((a~+ a~)G,&GG)

R:= ~ a = a a

g t(A
00, ~ (2

2.GP) g t((a~+ a~)G,~PtG,-> &GP)

where
• A : [0, a] —* JR x S3 is the future lightlike geodesic

0fgatbetweenAU = G and

Aa = T, which is an integral curve of the field (~ + s,,) (see Remark at the

beginningof this section).

• is the parallel transport defined on ‘y by the Levi-Civita connection

7 tJ~\~/~flthe pointsP and G.

As a consequence of &G = (1 + cos t cosp) a~— — sin t sin p a
2 2 ~

(Lemma 22.iv) and V
ta~= 0 = V a~r(Lemma 13; rememberthat Q a~is



COSMOLOGICAL REDSHIFT IN CONFORMAL SPACETIMES, ETC. 93

temporallyhomogeneous),it follows:

~Gt = U;~Va~~aG [~ &G];o*

0

being the diffeomorphism induced by the field a~for the valuea of the
parameter;then we canwrite (6)

~ &GP) = efQG e(G) e_~1’0iH0eihi~~(G).

On the otherhand,if we denoteby ~~ab (a, b = — 1, 0, 2, 3, 4) thegenerators

of SU(2, 2) actingcausallyon JR x S
3, it holds (see Appendix)

1 1
a~=2’

10.&G_ —(l+costcosp)ar——sintsinp a =

2 2

=—(2’_lO+ 204);
2

thus:

11FG,~(dlGP) = e~0 10 (2_~~+ 204) e°~b0(G);

usingthe commutationrelationsof the ~~ab (seeAppendix),onegets:

(6) Let p : JR’2-+ JR’1 be an affine diffeomorphismin the standardchartof JR’1 and let us
denoteby 6 the map TIR’1 —* IR’1, (a,a) l-+a + a. It is very easyto see that the following dia-
graincommutes:

TJR~ ~TlR’1

6! _____

IR’1 5~.+JR’1

Now if ~ is the diffeomorphisminduced(for a values of the parameter)by the flow of a
vector-fieldY with affine coordinatecomponentsin the standardchart,we shall have~ = e~

(exponentialmapin the Lie -groupof affinetrasformationof JR’1).
LetX be any vector field on JR’1. Thereexistsalwaysa field X’ on JR’1 suchthat~p,X(a)=

= X’l~pa),V a o JR’1, and it holds 6 oX’ = oh oX 0 = e°~’°6 oX 0 e0~’;this can be
rewritten(with the obviousidentification)asX’ = e°~oX0

This is still true on anarbitrarymanifold if we considerthe domainof a fixed chartwhere
the above mentionedconditionsare satisfied;in our case,let us takethe chart(t, p, t9, ~) on
JR x S3 andlet the field Ybeeither or (~i~+ ~
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11FG,~(dlGP) = — (2~~+ e °~102
04e°~b0)(G) =

= —(210—sina214+cosa204)(G);

finally, taking into accountthe expressionsof the
2ab (seeAppendix) and the

valuest(G) = u’(G) = u2(G) = u3(G) = U, we arrive to

a 1
HPG,&GP) T (a~—sina.o+cosa-a~)(G)=— (l+cosa)a~(G)

and from herewe obtain:

gar((~~+ a~)G,aVG) 2
R= =

a 1 l+cosag (a + a )G, —(1 + cosa)a G
t p .~

this ic the <<classical>>versionof Segal’scomputation.
(ii) The comparison between the detinition of the factor i< in (i) and the

expression obtained for the proper time ratio r in the corollary to the Lemma 15

r = a ~ y~r
0)

g
t(A~U, HTGX’y(fro))

showsclearly two objectionswhich can be made to the Segal’s calculation:
a) As it was mentioned in part B of this section, the redshift is not

related to a time evolution (~transportbetweenpoints P and G).

but rather to a light propagation(~ transportbetweenpoints T and

G). In quantummechanicallanguage,theoperatorH
0 is not invariant

under spatial translationsso that the operatorrepresentingthe dyna-

cal variable <<apparentenergy>>usedby theobserverin Tto analyzethe

radiation coming from G will be the result of the <<spacetimeevolu-

tion>> of the operatorH0. This is the main objectionto Segal’s compu-
tation.

b) It has no meaning to assumethat ‘yand ‘y’ are integral curves of~cL
becausethey are integral curvesof Q a~.However, this fact hasno
incidence (as we are going to see immediately) in the cosmological

redshift, provided the objection (a) hasbeen correctly salved; this is

dueto the fact that is also temporallyhomogeneous(seeRemark

in partA of this section).

(iii) Here we aregoing to reform Segal’scomputation,taking into accountthe
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objection(a).
Let uscompute(following the schemeof (i)) the ratio betweenscalarproducts:

R’ — gas(A0 0, &GG) — gat((at + a)G, &GG)— gar(A 0 ~ &GT) — gSt((a~+ a~)G,
11TG,X &GT)

with
• A beingasin (i)

• erG,>, being the paralleltransportdefinedon A by the Levi-Civita connec-

tion ~ betweenthepoints Tand G.

From the argumentsgiven in (i), and becauseVta~= 0 (a,~is geodesicfor
7 it’s inmediateto checkit), it follows:

V5~~(a~+ a) U;=~V~~+i~)~ = [a~+ a~,&G];=~

~ &Go~O(G);

then we can write

HTG,X(&GT) = e0@t+>~~)&Ge(G),

taking in account(seeAppendix)that:

= 2_ ~ a~lu = u2 = 0 = 2~, &G = (2_ 10 + 204),

and using the conmutation relations between the 2ab (see Appendix), one

obtains:
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HTGx(~GT)= (210+e
0~34(e0~02

04e
0~10)e°~34)(G)=

= — (2~~—~ + cosa ~ =

= —(2

10—sina(sina2_13+cosa-2_14)+cosa-(sina203+cosa
2

04))(G)

finally, taking in account the expressionsfor the
2ab (seeAppendix) and the

valuest(G) = u’(G) = u2(G) = u3(G) = U, we arrive to:

11TG~&Gfl= —(a
5—sin

2aa~—sina’cosa-o+cosasinaU+

+ cos2a a~)(G)= — ((I + cos2a)a~—sin2aa~)(G)

and from herewe obtain:
gat((a

5+ a )G, a5G)
= a( a~)G, ((1 + c:s

2a)ar —sin2a~a~)(G))=

1 1
——(1 + cos2a)—— sen2a

2 2

(iv) Conelusion

The <<classical>>(~ geometrical) approachof Segal’scomputation (evaluation

of the factorR) yields the result(see(i)),

gat(x
00, ~ 2

R:= a a =

g
t(X

00,H~~(2
2.~P)1 +cosa

the objection (a) (see (ii)) leads to computethe ratio R’ (insteadof R); one

gets(see(iii)

g5~(AU, &GG)

R’:= ~ =1;

g t(X
00, ~TG,X ~

the objection (b) (see (ii)) leads to compute the ratio r (instead of R’). One
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obtains (see theorems1 and 2; the computationis much easierthan the onesof
Rand R’):

gat(A00, a5G)

r:= a a =1.

g
t(A

00, flTG,>.a~fl

(The result r = 1 = R’ was actually expected;see Remark in part A of this

section)-

7. APPENDIX

We describeright now the local action of the causalgroup SU(2,2) on the

Segal’sCST (JR x ~3, [— dt

2 oh]). The generatorsof 0 (2, 4) on JR6 are given by

+ l,a=—l,U

L :=eawaa _e~~~wbawhere
6a=

ab

—l,a= 1,2,3,4

with Lie brackets ~
1gb’ LbC] = CbLac~

The conformal map (Lemma 18) / : (lR4, [i~]) —+ (B, ‘�B) has (on its image,
densein B) an inversemap given by

__________ [Vrepresentative
w ~-+ x, with XM = 01 = 0, 1, 2, 3)

(w~+ w4) elementwE w]

Thus the generators1ab of SU(2,2)/7~4actingon JR4 (through j 1) aregivenby

77(X,X) x~
l~ = 1+ a +e~—S,withS:=x°a

4 X~ 2 X~

114 = — S

1 .=x°a .+x’a
Oj x0

l..=—x’a .+x’aii ~I

s~(x,x) xM
14= 1— a —en—S.

4 ~ 2

The conformal map (see Remark to Lemma 19) s : (B, ~‘B~ -+ (JR x S3,
[— dt2 oh]) is given by
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W
0

t=arcsin 2 2

+ w0 \I/2
[V representative

= 2 2 (i = 1,2,3). element w E~]
(w 1 + w°)1/2

Thus the generators£~of SU(2,2)/~4 (which are those of SU(2,2)) acting

on JR x S3(throughs) are given by

2_~~a~

2_
1~=—u

1sinta
5+cost(a~i—u’~2),with~:=u’a~j

= — (I — u1
2 _u22 _u32)i/2(sint a~+ cost ~)

= sin t a~j+ u’(cos t a~— sin t ~)

~ =—u’a~i+ u’a~i

(1 _u12 _u22 _u32)h/2(cost a~—sin t ~2)

_9~
14=(l_u1

2_u2i_u3i)iI2a~i.

We finally explain some notations concerningdifferent kinds of coordinates

usedin the text:

On S’ x S3
2 2

u~~’+u° =1

(u ~, u0, u1,u2, u3, u4) satisfying
2 2 2 2

u1 + u2 + u3 + u4 =

u_i = cost

change

U0 = sin t

[alsoon JR x 53] (t, u1,u2, u3, u4)

= sinpsin~sinp

u2 = sinp sin i~cos~
change ~ -

U =sinpcosi9

U4 = cosp

[alsoon JR x S3] (t, p, ~, ~p)
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On JR4

(x0, x1, x2, x3)

= fsinx”sinx’~’

change x2=xTsinx~~cosx~1

x3 = fcosx”

(x0, ~r, s’S, xv’).
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